Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Narodytska, Nina; Rümmer, Philipp (Ed.)Clausal proofs, particularly those based on the deletion resolution asymmetric tautology (DRAT) proof system, are widely used by Boolean satisfiability solvers for expressing proofs of unsatisfiability. Their success stems from their simplicity and scalability. When solvers go beyond pure propositional reasoning, however, generating clausal proofs becomes more difficult. Solvers that employ pseudo-Boolean reasoning, including cutting-planes operations, can express proofs in the VeriPB proof system, but its adoption is not widespread. We introduce PBIP (Pseudo-Boolean Implication Proof), a framework that provides an intermediate representation between VeriPB and clausal proofs. We also introduce a toolchain comprising 1) a VeriPB-to-PBIP translator that performs proof trimming and optimization, and 2) a PBIP-to-LRAT translator that makes use of proof-generating operations on ordered binary decision diagrams (BDDs) to generate clausal proofs in LRAT format, a variant of the DRAT that allows efficient checking. We demonstrate the viability of our approach, the effectiveness of our trimming, and the performance of our clausal proof generator on a set of native PB benchmarks and compare our approach to direct checking of VeriPB proofs.more » « less
-
Bertot, Yves; Kutsia, Temur; Norrish, Michael (Ed.)A recent breakthrough in computer-assisted mathematics showed that every set of 30 points in the plane in general position (i.e., no three points on a common line) contains an empty convex hexagon. Heule and Scheucher solved this problem with a combination of geometric insights and automated reasoning techniques by constructing CNF formulas ϕ_n, with O(n⁴) clauses, such that if ϕ_n is unsatisfiable then every set of n points in general position must contain an empty convex hexagon. An unsatisfiability proof for n = 30 was then found with a SAT solver using 17 300 CPU hours of parallel computation. In this paper, we formalize and verify this result in the Lean theorem prover. Our formalization covers ideas in discrete computational geometry and SAT encoding techniques by introducing a framework that connects geometric objects to propositional assignments. We see this as a key step towards the formal verification of other SAT-based results in geometry, since the abstractions we use have been successfully applied to similar problems. Overall, we hope that our work sets a new standard for the verification of geometry problems relying on extensive computation, and that it increases the trust the mathematical community places in computer-assisted proofs.more » « less
-
Chakraborty, Supratik; Jiang, Jie-Hong Roland (Ed.)Quantum Computing (QC) is a new computational paradigm that promises significant speedup over classical computing in various domains. However, near-term QC faces numerous challenges, including limited qubit connectivity and noisy quantum operations. To address the qubit connectivity constraint, circuit mapping is required for executing quantum circuits on quantum computers. This process involves performing initial qubit placement and using the quantum SWAP operations to relocate non-adjacent qubits for nearest-neighbor interaction. Reducing the SWAP count in circuit mapping is essential for improving the success rate of quantum circuit execution as SWAPs are costly and error-prone. In this work, we introduce a novel circuit mapping method by combining incremental and parallel solving for Boolean Satisfiability (SAT). We present an innovative SAT encoding for circuit mapping problems, which significantly improves solver-based mapping methods and provides a smooth trade-off between compilation quality and compilation time. Through comprehensive benchmarking of 78 instances covering 3 quantum algorithms on 2 distinct quantum computer topologies, we demonstrate that our method is 26× faster than state-of-the-art solver-based methods, reducing the compilation time from hours to minutes for important quantum applications. Our method also surpasses the existing heuristics algorithm by 26% in SWAP count.more » « less
An official website of the United States government

Full Text Available